894. Thiophen Derivatives of Potential Biological Interest. Part III.*

The Chemistry of 5-Substituted Thiophen-2-aldehydes.

By Ng. Ph. Buu-Hoï, Ng. Hoán, and Denise Lavit.

The chemistry of several 5-substituted thiophen-2-aldehydes has been investigated, chiefly with the view to preparing new compounds for biological investigation. Two series of derivatives in particular have been studied: stilbene-like substances for cancer research, and thiosemicarbazones and 4-keto- Δ^2 -thiazolin-2-ylhydrazones for the testing of tuberculostatic activity.

In continuation of earlier research on the use of thiophen-aldehydes for the synthesis of stilbene-like compounds (Buu-Hoï, Hoán, and Lavit, J., 1950, 2130; Buu-Hoï and Hoán, J., 1951, 251), and in view of the activity of α-phenylcinnamonitriles as mitotic poisons (cf. Lettré. Angew. Chem., 1947, 59, 26), the preparation of new αβ-disubstituted acrylo* Part II, J., 1951, 251.

nitriles in the thiophen series is reported. These include (a) α -aryl- β -2-thienylacrylonitriles (as I) formed by the alkali-catalysed condensation with arylacetonitriles of thiophen-2-aldehyde or several of its 5-substituted derivatives, (b) α -aryl- β -3-thienylacrylonitriles (II), obtained in the same way from 2:5-dimethylthiophen-3-aldehyde, and (c) β -aryl-

 α -2- (III) and β -aryl- α -3-thienylacrylonitriles (IV), arising similarly from the condensation of 2-thienyl- and of 2:5-dimethyl-3-thienyl-acetonitrile with aromatic aldehydes (see also Cagniant, *Bull. Soc. chim.*, 1949, **16**, 850).

The thiophen intermediates used were 2:5-dimethylthiophen-3-aldehyde, thiophen-2-aldehyde, and 5-ethyl-, 5-isobutyl-, 5-benzyl-, and 5-chloro-thiophen-2-aldehyde. All these were prepared in high yield from the appropriate thiophens by the N-methylformanilide procedure (King and Nord, J. Org. Chem., 1948, 13, 635). According to earlier findings, thiophen-2-aldehydes, in contrast with thiophen-3-aldehydes, condense readily with ethyl acetoacetate in the presence of piperidine to give cyclohexane derivatives instead of the expected ethyl thenylideneacetoacetates (Buu-Hoï, Hoán, and Lavit, loc. cit.). In agreement, 5-isobutyl- and 5-benzyl-thiophen-2-aldehyde give the cyclohexane esters (V) and (VI).

The nitriles (I), (III), (III), and (IV) (see Tables 1 and 2) crystallise well and give halochromic colours with sulphuric acid; those bearing halogen atoms were of special interest to us as potential inhibitors of œstrogens, and as liver-poisons.

The tuberculostatic activity of thiosemicarbazide (Jouin and Buu-Hoi, Ann. Inst. Pasteur, 1946, 72, 580) and of its reaction products with various aldehydes and ketones (Domagk, Behnisch, Mietzsch, and Schmidt, Naturwiss., 1946, 33, 315; Hoggarth, Martin, Storey, and Young, Brit. J. Pharmacol., 1949, 4, 248; Donovick, Pausy, Stryker, and Bernstein, J. Bacteriol., 1950, 59, 667) led us to prepare, for bacteriological testing, the thiosemicarbazones of thiophen-2-aldehyde and its 5-substituted derivatives, which were found to be highly active in vitro against Mycobacterium tuberculosis var. bovis (Welsch, Buu-Hoi, Dechamps, Hoán, Le Bihan, and Binon, Compt. rend., 1951, 232, 1608). cyclo-Condensation of these thiosemicarbazones with various α-halogenated fatty acids in the presence of sodium acetate (Chabrier et al., Bull. Soc. chim., 1947, 14, 797; 1950, 17, 48; cf. also Wilson et al., J., 1922, 121, 876; 1923, 123, 799; 1926, 253) led easily to a series of 4-keto-Δ²-thiazolin-2-ylhydrazones (VII) of the thiophen-2-aldehydes quoted above (see Table 3); these were less toxic, but also far less tuberculostatic, than the parent thiosemicarbazones.

These biological studies, including the animal tests, will be reported in full elsewhere.

EXPERIMENTAL

Preparation of Intermediates.—Thiophen-2-aldehyde, 5-ethyl- and 5-chloro-thiophen-2-aldehyde, and 2:5-dimethylthiophen-3-aldehyde were prepared according to King and Nord, and Buu-Hoï, Hoán, and Lavit (locc. cit.). The arylacetonitriles were prepared by treatment of the corresponding substituted arylmethyl chlorides or bromides with sodium cyanide in acetone.

5-isoButylthiophen-2-aldehyde. To a stirred mixture of 2-isobutylthiophen (40 g.) (b. p. $174-176^{\circ}$; best prepared by Huang-Minlon's modification of the Wolff-Kishner reduction of 2-isobutyrylthiophen; J. Amer. Chem. Soc., 1946, 68, 2486) and N-methylformanilide (50 g.) under reflux, phosphorus oxychloride (50 g.) was added in small portions; after the spontaneous reaction had subsided, the mixture was heated for 2 hours on a boiling-water bath, cooled, treated with a concentrated aqueous sodium acetate, and steam-distilled, giving the aldehyde (37 g.) as a colourless oil, b. p. $133^{\circ}/20$ mm., of unpleasant odour, becoming green on exposure to air (Found: C, $64\cdot2$; H, $7\cdot1$. $C_9H_{12}OS$ requires C, $64\cdot3$; H, $7\cdot1\%$). The thiosemicarbazone,

made in ethanol, crystallised from that solvent as almost colourless needles, m. p. 152° (Found: C, 49·7; H, 6·4. $C_{10}H_{15}N_3S_2$ requires C, 49·8; H, 6·2%).

5-Benzylthiophen-2-aldehyde. 2-Benzylthiophen (60 g.) was treated as above with N-methylformanilide (60 g.) and phosphorus oxychloride (60 g.); after removal by steam of N-methylaniline and excess of 5-benzylthiophen, the sparingly volatile 5-benzylthiophen-2-aldehyde was extracted with chloroform. The extract obtained was washed with dilute hydrochloric

TABLE	1.	A cr	vlon	itriles	(I)	and	(II).

		IABLE I.	Acrylonitriles (1) ana (11)	•		
			Found, %		Reqd., %		
_	_		n ,				1., %
Ar	R	М. р.	Formula	С	H	С	Н
T_{Mh}	e (I).						
		1040	C II NCCI	co o	0.0	22 =	
p-C ₆ H ₄ Cl	Н	124°	C ₁₃ H ₈ NSCl	63.2	3.6	$63 \cdot 5$	$3 \cdot 3$
p-C ₆ H ₄ F	,,	94	C ₁₃ H ₈ NSF	68.0	3.6	68.1	3.5
p-C ₆ H ₄ Br	,,	118	$C_{13}H_8NSBr$	$53 \cdot 5$	2.8	53.8	2.8
p-C ₆ H ₄ I	,,	112	$C_{13}H_8NSI$	46.0	$2 \cdot 2$	46.3	$2 \cdot 4$
β -C ₁₀ H ₇		127	$C_{17}H_{11}NS$	78.0	4.5	$78 \cdot 2$	$\overline{4}\cdot\overline{2}$
p-C ₆ H ₄ F	Ét	90	$C_{15}^{11}H_{12}^{11}NSF$	70.1	5.0	$70.\overline{0}$	$\frac{1}{4}.7$
p-061141		121	$C_{15}^{15}H_{12}^{12}NSCI$	65.9	4·1	65.8	
p-C ₆ H ₄ Cl	,,	120	$C_{15}H_{12}NSBr$	56·4	4.0		4.4
p-C ₆ N ₄ Br	,,		C151112113D1			56.6	3.8
$p\text{-}C_6H_4I$,,	128	$C_{15}H_{12}NSI$	49.6	$3\cdot 2$	49.3	$3 \cdot 3$
p-C ₆ H ₄ Me	,,	87	$C_{16}H_{15}NS$	$76 \cdot 2$	5.8	75.9	5.9
$p\text{-NO}_2\text{-}C_6H_4$,,	173	$C_{15}H_{12}O_2N_2S$	$63 \cdot 2$	$4 \cdot 4$	$63 \cdot 4$	$4 \cdot 2$
Ph	$\mathbf{B}\mathbf{u^i}$	53	$C_{17}H_{17}NS$	76.6	6.6	76.4	6.4
p - C_6H_4F	,,	86	$C_{17}H_{16}NSF$	71.4	$5 \cdot 4$	71.6	5· 6
p-C ₆ H ₄ Cl	,,	96	C ₁₇ H ₁₆ NSCl	67.3	$5\cdot 2$	67.7	5.0
p-C ₆ H ₄ Br		88	$C_{17}H_{16}NSBr$	58.8	4.4	59.0	4.6
$p - C_6 H_4 I$,,	89	$C_{17}H_{16}NSI$	51.6	$4 \cdot 0$	51.9	4.1
p-MeO·C ₆ H ₄	,,	63	$C_{18}H_{19}ONS$	$72 \cdot 4$	$\vec{6}\cdot\vec{7}$	72.7	6.4
	,,	128	$C_{17}^{181119}ONS$	71.7	6.3		
p-HO·C ₆ H ₄	,,		CILITONS			72.1	6.0
$p\text{-NO}_2\cdot C_6H_4$,,	159	$C_{17}H_{16}O_{2}N_{2}S$	65·1	5.0	65.4	$5 \cdot 1$
β - $\mathrm{C_{10}H_{7}}$,,,	110	$C_{21}H_{19}NS$	79.3	$6\cdot 2$	79.5	6.0
Ph	CH_2Ph	95	$C_{20}H_{15}NS$	$\mathbf{79 \cdot 4}$	$5\cdot 3$	$79 \cdot 7$	5.0
2-Thienyl	,,	119	$C_{18}H_{13}NS_2$	$70 \cdot 1$	$4 \cdot 3$	70.4	$4 \cdot 2$
p-C ₆ H ₄ Me	,,	110	$C_{21}H_{17}NS$	$80 \cdot 2$	5.5	80.0	5.4
p-C ₆ H ₄ F	,,	102	$C_{20}H_{14}NSF$	75.0	$4 \cdot 4$	$75 \cdot 2$	$4 \cdot 4$
p-C ₆ H ₄ Cl	,,	105	$C_{20}^{10}H_{14}^{14}NSCI$	$71 \cdot 1$	4.5	71.5	$\overline{4\cdot 2}$
p-C ₆ H ₄ Br		132	$C_{20}^{20}H_{14}^{14}NSBr$	62.9	3.8	$63 \cdot 2$	$\overline{3}.\overline{7}$
p-C ₆ H ₄ I	,,	142	C_{20}^{20114} NSI	56.0	3.5	$56.\overline{2}$	3.3
	,,	106	$C_{21}^{20}H_{17}^{14}ONS$	75.7	5.4	76·1	_
p-MeO·C ₆ H ₄	,,	152	$C_{20}^{2111}H_{14}^{17}O_{2}N_{2}S$	69.2	4.3		5.1
$p\text{-NO}_2\text{-C}_6\text{H}_4$,,					69.4	4.0
β -C ₁₀ H ₇	a, "	131	$C_{24}H_{17}NS$	82.0	4.6	82.1	4.8
$p\text{-}C_6H_4CI$	C1	177	C ₁₃ H ₇ NSCl ₂	55.4	$2 \cdot 2$	55.7	2.5
p-C ₆ H ₄ Br	,,	171	C ₁₃ H,NSClBr	47.7	$2 \cdot 0$	48.1	$2 \cdot 2$
p-C ₆ H ₄ I	,,	167	C ₁₃ H ₇ NSCII	41.9	$2 \cdot 2$	42.0	1.9
Type	(II).						
p-C ₆ H ₄ F		98	$C_{15}H_{12}NSF$	70.3	4.5	70.0	4.7
p-C ₆ H ₄ Cl		147	$C_{15}^{15}H_{12}^{12}NSC1$	65.4	$\overline{4}\cdot2$	65.8	$\overline{4\cdot 4}$
p-C ₆ H ₄ Br		157	$C_{15}^{15}H_{12}^{12}NSBr$	56.3	$3.\overline{6}$	56.6	3.8
p-06114D1		146	$C_{15}^{1511}_{12}^{12}NSI$	49.0	3.2	49.3	
p-C ₆ H ₄ I			C H NC				3.3
β -C $_{10}$ H $_{7}$		131	$C_{19}H_{15}NS$	78.6	$5 \cdot 4$	$78 \cdot 9$	$5\cdot 2$
		TABLE 2.	Acrylonitriles (III) and (IV).		
			J	,	•	ъ.	0/
				Foun	u, %	Reqd	., %
Ar		М. р.	Formula	С	Н	С	H
	, /TTT\						

			Found, %		Reqd., %		
Ar	M. p.	Formula	С	H	С	H	
Type (III).							
<i>p</i> -C ₆ H ₄ F ^α	77°	$C_{13}H_8NSF$	67.9	$3 \cdot 4$	$68 \cdot 1$	3.5	
$3:4:1-C_6H_3Cl_2$	119	C ₁₈ H ₇ NSCl ₂	55.5	$2 \cdot 3$	55.7	$2 \cdot 5$	
$2:4:1-C_{6}H_{3}Cl_{2}^{*b}$	150	C ₁₃ H ₇ NSCl ₂	55.5	$2 \cdot 2$,,	,,	
a-C ₁₀ H ₇	110	$C_{17}H_{11}NS$	78.3	4.4	$78 \cdot 2$	4.2	
β-C ₁₀ H ₇ "	115	$C_{17}H_{11}NS$	78.0	4.5	,,	,,	
5-Acenaphthyl	143	$C_{19}H_{13}NS$	$79 \cdot 1$	4.6	79.4	4.5	
Type (IV).							
p-C ₆ H ₄ F a	85	$C_{15}H_{12}NSF$	70.1	5.0	70.0	4.7	
p-C ₆ H ₄ Cl ^a	106	$C_{15}H_{12}NSCI$	65.5	$4 \cdot 2$	65.8	4.4	
a-C ₁₀ H ₂ ^d	100	$C_{19}H_{15}NS$	79.0	5.5	78.9	$5 \cdot 2$	
β-C ₁₀ H ₇ a	102	$C_{19}H_{15}NS$	$79 \cdot 2$	5.5	,,	,,	
3-Pyrenyl ^c	182	$C_{25}H_{17}NS$	$82 \cdot 3$	4.5	82.6	4.7	
Colours with sulphuric acid: "red; byellow-green; blue; violet.							

Table 3. 4-Keto- Δ^2 -thiazolin-2-ylhydrazones (VII).

				Found, %		Reqd., %	
X	R	М. р.	Formula	С	H	С	H
Н	H	248°	$C_8H_7ON_3S_2$	42.4	$3 \cdot 0$	42.7	3.1
,,	Et	215	C, H, ON, S	$47 \cdot 1$	4.0	47.4	$4 \cdot 3$
,,	Pri	207	$C_{11}H_{12}ON_{2}S_{2}$	$49 \cdot 1$	4.7	49.4	4.9
,,	Pr^n	208	C., H., ON, S.	$49 \cdot 2$	$4 \cdot 6$,,	,,
,,	$\mathbf{B}\mathbf{u^n}$	209	CaaHarONaSa	51.0	$5 \cdot 1$	$5\overset{.}{1}\cdot 2$	$5 \cdot 3$
,,	iso - C_5H_{11}	202	$C_{19}H_{19}ON_{9}S_{9}$	$52 \cdot 6$	5.7	$52 \cdot 9$	5.8
,,	n-C ₅ H ₁₁	191	C10H17ONoSo	$52 \cdot 5$	5.8	$52 \cdot 9$	5.8
,,	$n-C_{14}H_{20}$	131	$C_{99}H_{95}ON_{9}S_{9}$	$62 \cdot 4$	8.5	$\boldsymbol{62 \!\cdot\! 7}$	$8 \cdot 3$
,,	$n-C_{16}H_{33}$	120	$C_{94}H_{39}ON_3S_9$	$64 \cdot 3$	8.5	$64 \cdot 1$	8.7
C1	H	280	$C_8H_6ON_3S_9Cl$	37.0	$2 \cdot 3$	36.9	$2 \cdot 3$
,,	Et	220	$C_{10}H_{10}ON_{0}S_{0}Cl$	41.4	$3 \cdot 6$	41.7	3.5
,,	\Pr^{i}	226	$C_{11}H_{10}ON_{0}S_{0}Cl$	$43 \cdot 4$	$4 \cdot 2$	43.7	$4 \cdot 0$
,,	Pr^n	219	C11H10ON2SaCl	43.6	3.9	,,	,,
,,	$n-C_5H_{11}$	197	C1.H1.ON.S.Cl	47.0	$4 \cdot 6$	47.3	4.8
,,	$n - C_{14}H_{29}$	168	$C_{22}H_{34}ON_3S_2Cl$	$57 \cdot 6$	$7 \cdot 6$	$57 \cdot 9$	7.5
,,	$n-C_{16}H_{33}$	159	Ca.HasONaSaCl	$59 \cdot 4$	8.1	59.5	7.9
$\mathbf{B}\mathbf{u^i}$	H	216	$C_{12}H_{15}ON_3S_2$	50.9	$5 \cdot 1$	$51 \cdot 2$	$5 \cdot 3$
,,	Et	162	$C_{14}H_{19}ON_3S_2$	$54 \cdot 1$	$6 \cdot 2$	$54 \cdot 4$	6.1
,,	$\Pr_{\mathbf{i}}$	169	$C_{15}H_{21}ON_3S_2$	$55 \cdot 6$	6.3	55.7	6.5
**	Pr	167	$C_{15}^{15}H_{21}^{21}ON_3S_2$	55.4	$6 \cdot 4$.,,	_,,_
,,	n - C_5H_{11}	160	C ₁₇ H ₉₅ ON ₃ S ₉	57.9	$7 \cdot 2$	$58 \cdot 1$	$7 \cdot 1$
,,	$n-C_{14}H_{29}$	133	CocHacONoSo	65.5	$9 \cdot 2$	65.4	9.0
,,	n - $C_{16}H_{33}$	115	$C_{28}H_{47}ON_3S_2$	$66 \cdot 6$	9.5	66.5	$9 \cdot 3$
$\mathrm{CH_2Ph}$	H	235	$C_{15}H_{19}ON_{9}S_{9}$	56·7	4 ·1	$57 \cdot 1$	$4 \cdot 1$
,,	Et	189	$C_{17}H_{17}ON_3S_2$	$59 \cdot 2$	4.9	59.5	5.0
,,	$C_{5}H_{11}$	188	$C_{20}H_{23}ON_3S_2$	62.0	6.3	62.3	6.0
,,	$n - C_{14}H_{29}$	148	$C_{29}^{10}H_{41}^{23}ON_{3}S_{2} \\ C_{31}^{10}H_{45}^{10}ON_{3}S \\ C_{15}^{10}H_{21}^{10}ON_{3}S_{2}$	67.8	$8\cdot 2$	68.1	8.0
	$n-C_{16}^{14}H_{33}^{25}$ $n-C_{5}H_{11}$	143	$C_{31}H_{45}ON_3S$	68.8	8.3	69.0	8.3
Et	n - C_5H_{11}	167	$\mathrm{C_{15}H_{21}ON_3S_2}$	55.9	$6 \cdot 3$	$55 \cdot 7$	6.5

acid, then with water, and dried (Na_2SO_4) , the solvent removed, and the residue vacuum-distilled, yielding the *aldehyde* (30 g.) as a pale yellow oil, b. p. 195°/13 mm. (Found: C, 71·0; H, 5·0. $C_{12}H_{10}OS$ requires C, 71·3; H, 5·0%). The *thiosemicarbazone* formed from acetic acid yellowish needles, m. p. 175° (decomp.) (Found: N, 15·0. $C_{13}H_{13}N_3S_2$ requires N, 15·3%).

Ethyl 2-(5-isoButyl-2-thienyl)-4-hydroxy-6-keto-4-methylcyclohexane-1: 3-dicarboxylate (V).— A mixture of 5-isobutylthiophen-2-aldehyde (2 g.) and ethyl acetoacetate (1·5 g.) was cooled in ice, and 5 drops of piperidine were added. After 24 hours at room temperature, the solid cyclic ester had formed; it crystallised from ether-ligroin (b. p. $100-120^{\circ}$) as colourless needles, m. p. 96°, giving an orange-yellow colour with sulphuric acid (Found: C, 61·1; H, 7·3. $C_{21}H_{30}O_6S$ requires C, 61·5; H, 7·3%).

Ethyl 2-(5-benzyl-2-thienyl)-4-hydroxy-6-keto-4-methylcyclohexane-1: 3-dicarboxylate (VI), similarly prepared, formed from ether colourless prisms, m. p. 145°, giving a red colour with sulphuric acid (Found: C, 64·6; H, 6·3. $C_{24}H_{28}O_6S$ requires C, 64·9; H, 6·3%).

Preparation of Acrylonitriles.—The nitriles (Tables 1 and 2) were prepared by shaking a solution of the aldehyde and arylacetonitrile in warm ethanol with a few drops of 30% aqueous potassium hydroxide. The substance precipitated was washed with water, and recrystallised from ethanol; in the case of p-nitrophenylacetonitrile, piperidine was used in place of potassium hydroxide. β -(5-isoButyl-2-thienyl)- α -p-hydroxyphenylacrylonitrile was prepared by demethylation of the corresponding methyl ether with pyridine hydrochloride. With sulphuric acid, the acrylonitriles from thiophen-2-aldehyde gave a red or violet colour, those from 5-substituted thiophen-2-aldehydes gave a green or brown colour, those from the 5-benzyl aldehyde a red or brown-red colour, and those from the 5-chloro-aldehyde a yellow colour, becoming green on heating of the mixture; β -(2:5-dimethyl-3-thienyl)- α -2-naphthylacrylonitrile gave a violet colour.

Preparation of 4-Keto- Δ^2 -thiazolin-2-ylhydrazones.—A suspension of the appropriate thiosemicarbazone (1 mol.) with chloroacetic acid or the appropriate α -bromo-acid in acetic acid or ethanol, was refluxed for 5 hours in the presence of sodium acetate; the precipitated hydrazones (Table 3) were recrystallised from acetic acid or ethanol. 5-Chlorothiophen-2-aldehyde thiosemicarbazone formed from ethanol colourless prisms, m. p. 163° (Found: C, 32·4; H, 2·8. $C_6H_6N_3S_2Cl$ requires C, 32·7; H, 2·7%).

DEPARTMENT OF ORGANIC CHEMISTRY, THE RADIUM INSTITUTE,

UNIVERSITY OF PARIS.

[Received, September 1st, 1952.]